Facebook Twitter RSS
banner

APLIKASI KONSEP TEKANAN ZAT PADA MAKHLUK HIDUP

 3. Tekanan Gas pada Proses Pernapasan Manusia

Di dalam paru-paru tepatnya di alveolus terjadi pertukaran antara oksigen (O2) dan karbondioksida (CO2). Setiap menit paru-paru dapat menyerap sekitar 250 mL O2 dan mengeluarkan sebanyak 200 mL CO2. Proses pertukaran antara O2 dengan COterjadi secara difusi, yaitu proses perpindahan zat terlarut dari daerah yang memiliki konsentrasi dan tekanan parsial tinggi ke daerah yang memiliki konsentrasi dan tekanan parsial rendah.

Tekanan parsial adalah tekanan yang diberikan oleh gas tertentu dalam campuran gas tersebut. Pada bagian ini yang dimaksud tekanan parsial adalah  tekanan O2 dan CO2 yang terlarut di dalam darah. Tekanan parsial O2 diberi simbol PO2, sedangkan tekanan parsial CO2 diberi simbol PCO2. Pada sistem peredaran darah, tekanan parsial antara O2 dan CO2 bervariasi pada setiap organ. Darah yang masuk ke paru-paru melalui arteri pulmonalis memiliki PO2 yang lebih renada dan PCO2 yang lebih tinggi daripada udara di dalam alveoli.

Pada saat darah memasuki kapiler alveoli, CO2 yang terkandung dalam darah berdifusi menuju alveoli dan O2 yang terkandung dalam udara di alveoli berdifusi ke dalam darah. Akibatnya PO2 dalam darah menjadi naik (banyak mengandung oksigen) dan PCO2 dalam darah menjadi turun (sedikit mengandung karbondioksida). Darah tersebut selanjutnya mengalami difusi menuju jaringan tubuh, O2 dalam darah tersebut mengalami difusi menuju jaringan tubuh. Kandungan CO­2 dalam jaringan tubuh lebih besar dari pada kandungan CO2 dalam darah, sehingga CO2 dalam jaringan tubuh mengalami difusi ke dalam darah. Setelah melepaskan O2 dan membawa COdari jaringan tubuh, darah Kembali menuju ke jantung dan dipompa lagi ke paru-paru.

Sumber:

Zubaidah siti dkk. 2017. ILMU PENGETAHUAN ALAM. Jakarta : Kementerian pendidikan dan kebudayaan RI.

SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar:

APLIKASI KONSEP TEKANAN ZAT PADA MAKHLUK HIDUP

 2. Tekanan Darah pada Sistem Peredaran Darah Manusia

Tekanan yang terdapat pada pembuluh darah memiliki prinsip kerja seperti hukum Pascal. Hal ini karena tekanan pada pembuluh darah merupakan tekanan yang berada pada ruang tertutup. Pada saat jantung memompa darah, darah akan mendapatkan dorongan sehingga mengalir melalui pembuluh darah. Saat mengalir dalam pembuluh darah, darah memberikan dorongan pada dinding pembuluh darah yang disebut dengan tekanan darah. Agar tekanan darah tetap terjaga, maka pembuluh darah harus terisi penuh oleh darah. Bila terjadi kehilangan darah akibat kecelakaan atau penyakit, tekanan darah dapat hilang, sehingga darah tidak dapat mengalir menuju sel-sel di seluruh tubuh. Akibatnya, sel-sel tubuh akan mati karena tidak mendapatkan pasokan oksigen dan nutrisi.

Sumber gbr: Medkes.com

Tekanan darah diukur dengan menggunakan sebuah alat yang bernama sphygmomanometer. Adapula yang menyebutnya dengan tensimeter.

Tekanan darah diukur di dalam pembuluh nadi (arteri) besar yang biasanya dilakukan di tangan bagian lengan atas. Tekanan darah yang normal berkisar antara 120/80 mmHg. Angka pertama menunjukkan angka saat bilik berkontraksi dan darah terdorong keluar dari bilik jantung melalui pembuluh arteri yang disebut angka sistol. Angka kedua, yaitu yang lebih rendah adalah hasil pengkuran tekanan saat bilik berelaksasi dan darah masuk menuju bilik jantung, tepat sebelum bilik-bilik ini berkontraksi lagi, disebut angka diastol.

SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar:

APLIKASI KONSEP TEKANAN ZAT PADA MAKHLUK HIDUP

 1. Pengangkutan Air dan Nutrisi pada Tumbuhan

a. Pengangkutan Air pada Tumbuhan

Tumbuhan menyerap air dan garam mineral dari dalam tanah. Air dan garam mineral masuk ke akar melalui epidermis akar secara difusi dan osmosis. Air dan garam mineral tersebut kemudian dibawa ke daun oleh xylem. Pertama-tama, air diserap oleh rambut-rambut akar. Kemudian, air masuk ke sel epidermis melalui proses secara osmosis. Selanjutnya, air akan melalui korteks. Dari korteks, air kemudian melalui endodermis dan perisikel. Selanjutnya, air masuk ke jaringan xylem yang berada di akar. Setelah tiba di xylem akar, ar akan bergerak ke xylem batang dan ke xylem daun.

Air dari dalam tanah dapat masuk ke batang tumbuhan melalui akar karena adanya daya tekan akar. Tekanan air tanah lebih besar dibanding tekanan air dalam batang sehingga air dapat masuk ke dalam sel – sel tumbuhan melalui akar. Air yang telah masuk ke dalam sel – sel tumbuhan dapat mencapai daun – daun pada tumbuhan tersebut karena adanya daya isap daun dan daya kapilaritas pada batang tumbuhan, yaitu naiknya zat cair (air) melalui pembuluh kapiler (xylem).

Daya kapilaritas batang dipengaruhi oleh adanya gaya kohesi dan adhesi. Kohesi merupakan kecenderungan suatu molekul untuk dapat berikatan dengan molekul lain yang sejenis. Adhesi adalah kecenderungan suatu molekul untuk dapat berikatan dengan molekul lain yang tidak sejenis. Melalui gaya adhesi, molekul air membentuk ikatan yang lemah dengan dinding pembuluh. Melalui gaya kohesi, akan terjadi ikatan antara satu molekul air dengan molekul air lainnya. Hal ini akan menyebabkan terjadinya Tarik menarik antara molekul air yang satu dengan molekul air yang lainnya di sepanjang pembuluh xylem.

Selain disebabkan oleh gaya kohesi dan adhesi, naiknya air ke daun disebabkan oleh penggunaan air di bagian daun atau yang disebut dengan daya isap daun. Air dimanfaatkan oleh tumbuhan dalamproses fotosintesis . Pada saun, air juga mengalami penguapan. Penguapan air oleh daun disebut transpirasi. Penguapan air oleh bagian daun akan menyebabkan terjadinya tarikan terhadap air yang berada pada bagian xylem sehingga air yang ada pada akar dapat naik ke daun.

b. Pengangkutan Nutrisi pada Tumbuhan

Semua bagian tumbuhan, yaitu akar, batang, dan daun, dan bagian lainnya memerlukan nutrisi. Agar kebutuhan nutrisi di setiap bagian tumbuhan terpenuhi, maka dibutuhkan suatu proses pengangkutan nutrisi hasil fotosintesis berupa gula dan asam amino ke seluruh tubuh tumbuhan. Pengangkutan hasil fotosintesis dari daun ke seluruh tubuh terjadi melalui pembuluh floem.

Pengangkutan zat – zat hasil fotosintesis dimulai dari sumbernya, yaitu daun (daerah yang memiliki konsentrasi gula tinggi) ke bagian tanaman lain yang dituju (daerah yang memiliki konsentrasi gula rendah) dengan dibantu oleh sirkulasi air yang mengalir melalui pembuluh xylem dan floem.


1. Pengangkutan Air dan Nutrisi pada Tumbuhan

a. Pengangkutan Air pada Tumbuhan

Tumbuhan menyerap air dan garam mineral dari dalam tanah. Air dan garam mineral masuk ke akar melalui epidermis akar secara difusi dan osmosis. Air dan garam mineral tersebut kemudian dibawa ke daun oleh xylem. Pertama-tama, air diserap oleh rambut-rambut akar. Kemudian, air masuk ke sel epidermis melalui proses secara osmosis. Selanjutnya, air akan melalui korteks. Dari korteks, air kemudian melalui endodermis dan perisikel. Selanjutnya, air masuk ke jaringan xylem yang berada di akar. Setelah tiba di xylem akar, ar akan bergerak ke xylem batang dan ke xylem daun.

Air dari dalam tanah dapat masuk ke batang tumbuhan melalui akar karena adanya daya tekan akar. Tekanan air tanah lebih besar dibanding tekanan air dalam batang sehingga air dapat masuk ke dalam sel – sel tumbuhan melalui akar. Air yang telah masuk ke dalam sel – sel tumbuhan dapat mencapai daun – daun pada tumbuhan tersebut karena adanya daya isap daun dan daya kapilaritas pada batang tumbuhan, yaitu naiknya zat cair (air) melalui pembuluh kapiler (xylem).

Daya kapilaritas batang dipengaruhi oleh adanya gaya kohesi dan adhesi. Kohesi merupakan kecenderungan suatu molekul untuk dapat berikatan dengan molekul lain yang sejenis. Adhesi adalah kecenderungan suatu molekul untuk dapat berikatan dengan molekul lain yang tidak sejenis. Melalui gaya adhesi, molekul air membentuk ikatan yang lemah dengan dinding pembuluh. Melalui gaya kohesi, akan terjadi ikatan antara satu molekul air dengan molekul air lainnya. Hal ini akan menyebabkan terjadinya Tarik menarik antara molekul air yang satu dengan molekul air yang lainnya di sepanjang pembuluh xylem.

Selain disebabkan oleh gaya kohesi dan adhesi, naiknya air ke daun disebabkan oleh penggunaan air di bagian daun atau yang disebut dengan daya isap daun. Air dimanfaatkan oleh tumbuhan dalamproses fotosintesis . Pada saun, air juga mengalami penguapan. Penguapan air oleh daun disebut transpirasi. Penguapan air oleh bagian daun akan menyebabkan terjadinya tarikan terhadap air yang berada pada bagian xylem sehingga air yang ada pada akar dapat naik ke daun.

b. Pengangkutan Nutrisi pada Tumbuhan

Semua bagian tumbuhan, yaitu akar, batang, dan daun, dan bagian lainnya memerlukan nutrisi. Agar kebutuhan nutrisi di setiap bagian tumbuhan terpenuhi, maka dibutuhkan suatu proses pengangkutan nutrisi hasil fotosintesis berupa gula dan asam amino ke seluruh tubuh tumbuhan. Pengangkutan hasil fotosintesis dari daun ke seluruh tubuh terjadi melalui pembuluh floem.

Pengangkutan zat – zat hasil fotosintesis dimulai dari sumbernya, yaitu daun (daerah yang memiliki konsentrasi gula tinggi) ke bagian tanaman lain yang dituju (daerah yang memiliki konsentrasi gula rendah) dengan dibantu oleh sirkulasi air yang mengalir melalui pembuluh xylem dan floem.

SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar:

Tekanan Zat Gas

C. Tekanan Gas dalam Ruang Tertutup di Kehidupan Sehari-hari


Kegiatan outdoor apa yang kamu suka? Bungee jumpingFlying fox? Arung jeram? Hiking? Permainan seperti bungee jumping dan flying fox bakal membuat kamu meluncur dan merasa seakan-akan kamu sedang terbang di udara. Selain bungee jumping dan flying fox, masih ada lagi lho permainan lain yang membuatmu ‘terbang’ di udara. Salah satunya adalah balon udara. Berbeda dengan bungee jumping dan flying fox, balon udara ini nggak akan bikin jantungmu copot Squad. Saat berada di atas balon udara yang sedang terbang ribuan kaki di udara, kita bisa menikmati pemandangan yang luar biasa di sekitarnya.

Di beberapa negara seperti Turki, Austria, dan bahkan Indonesia memiliki tempat wisata dan festival balon udara. Beberapa di antaranya ada di Ciwidey Bandung, di Taman Mini Indonesia Indah (TMII) Jakarta dan di Nglegok Blitar. Nggak usah jauh-jauh ke luar negeri kan sekarang kalau mau mencoba wisata balon udara.

tekanan gas ruang tertutup - wisata balon udara


Nah, kamu tau nggak sih kenapa balon udara sebesar itu bisa terbang? Pada artikel penerapan gas dalam ruang terbuka kita telah membahas tentang hubungan tekanan udara dengan ketinggian, di artikel kali ini kita akan membahas tentang hubungan tekanan udara dengan volume. Hal itu ada kaitannya sama balon udara tadi. Sekarang, kita langsung cus ke materinya!

Jadi, selain dengan ketinggian, tekanan gas atau tekanan udara juga memiliki hubungan dengan volume. Kalau hubungan antara volume dan tekanan udara, penemunya adalah Robert Boyle.

Robert Boyle - tekanan gas dalam ruang tertutup


Hukum yang dinamakan hukum Boyle tersebut persamaannya adalahh

PV = konstan

Atau

P1V1 = P2V2

 

Di mana:

P1 = tekanan udara awal

V1= volume udara awal

P2= tekanan udara akhir

V2= volume udara akhir

Kamu pasti masih bingung dan membayangkan ‘seperti apa ya tekanan udara dalam ruang tertutup di kehidupan sehari-hari’? Nah, berikut ini ada beberapa fenomena tekanan udara dalam ruang tertutup yang bisa kita temui. Simak ya.

  1. Contoh pertama adalah balon udara. Menjawab pertanyaan di atas tadi ‘kenapa balon udara bisa terbang?’. Jadi, balon udara bisa terbang atau mengangkasa karena tekanan udaranya diturunkan. Bagaimana cara menurunkan tekanan udaranya? Yaitu dengan cara memanaskan balon udara. Setelah dipanaskanvolume balon udara akan meningkat sementara tekanan udaranya menurun. Setelah itu, baru balon udara bisa terbang.
  2. Sementara itu prinsip tekanan udara dan volume juga ada pada makhluk hidup yaitu pada sistem pernapasan manusia. Konsep tekanan dan volume bisa kita lihat pada proses menarik napas (inspirasi) dan proses mengeluarkan napas (ekspirasi).
prinsip tekanan udara dan volume juga ada pada makhluk hidup

Saat inspirasi, rongga dada harus membesar supaya volume paru-paru membesar. Saat volume paru-paru membesartekanan paru-paru mengecil. Akibatnya, udara dapat mengalir masuk dan kita bisa bernapas. Kebalikan dengan inspirasi, saat ekspirasi volume paru-paru harus mengecil. Setelah volume paru-paru mengecil, tekanan paru-paru membesar. Karena itulah napas yang kita tarik tadi bisa kita keluarkan Squad.

Setelah membahas tekanan udara pada ruang tertutup dan contoh fenomenanya, sekarang kita akan membahas alat-alat apa saja yang digunakan untuk mengukur tekanan udara pada ruang tertutup. Ada apa aja ya?

 

1. Manometer Raksa Terbuka

Manometer raksa ini berbentuk huruf U yang kedua ujungnya terbuka. Salah satu ujung tabung selalu dihubungkan dengan udara luar supaya tekanannya sama dengan tekanan atmosfer. Sementara ujung yang lain dihubungkan dengan ruangan yang akan diukur tekanannya.

Besarnya tekanan gas dapat dihitung dengan rumus:

Pgas = P0 ± h

 Di mana:

Pgas = tekanan udara yang diukur (mmHg atau cmHg)

P0 = tekanan udara atmosfer (mmHg atau cmHg)

h = perbedaaan ketinggian raksa setelah gas masuk (mm atau cm)

(+) apabila tinggi kolom udara lebih tinggi daripada kolom tabung

(-) apabila tinggi kolom udara lebih rendah daripada kolom tabung

 

2. Manometer Raksa Tertutup

alat untuk mengukur tekanan gas pada ruang tertutup

Prinsip kerja pada manometer raksa tertutup sama dengan manometer raksa terbuka, Squad. Tapi, salah satu ujung dari tabungnya ditutup. Secara matematis dapat ditulis dengan:

Pgas = h

di mana:

Pgas = tekanan udara yang diukur (mmHg atau cmHg)

h = perbedaaan ketinggian raksa setelah gas masuk (mm atau cm)

 

3. Manometer Bourdon

penemu manometer bourdon

Kalau manometer yang satu ini terbuat dari logam dan digunakan untuk mengukur tekanan udara (berupa uap) yang sangat tinggi. Misalnya seperti uap pada pembangkit listrik tenaga uap (PLTU). Selain untuk PLTU, alat ini juga digunakan untuk memeriksa tekanan udara dalam ban oleh para penambal ban. Untuk membaca manometer bourdon tidak perlu pakai rumus seperti yang lain ya Squad. Karena jarum yang ada manometer sudah menunjuk ke angka tekanan udara dari uap tersebut.

Setelah baca artikel di atas, apakah kamu sudah paham tentang tekanan gas dalam ruang tertutup berikut dengan penerapan serta rumus-rumusnya?


SUMBER : https://www.ruangguru.com/blog/ipa-kelas-8-tekanan-gas-dalam-ruang-tertutup-di-kehidupan-sehari-hari


SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar:

Tekanan Zat Cair / Tekanan Hidrostatis

 B. Tekanan Hidrostatis: Rumus, Penjelasan Konsep, dan Kaitannya dengan Bejana Berhubungan



Siapa yang suka berenang? Kalau katanya Demitri Martin, komedian asal Amerika, berenang itu kegiatan paling aneh. Kita sulit membedakan berenang sebagai kegiatan olahraga, atau upaya penyelamatan diri biar nggak tenggelem.

Masalahnya, menyelam tidak hanya membuat kita merasa panik karena… HEY, AIR ITU BUKAN HABITAT ASLI MANUSIA GITU LHO! Selain itu, semakin dalam kita menyelam, kepala kita terasa sakit. Kayak berat dan terasa pengang gitu, deh.

Coba deh perhatikan lagi gambar paling atas artikel ini. Secara fisika, kita bisa membuktikan kalau penyelam yang bawah akan lebih sulit “berenang” dianding penyelam yang dekat dengan permukaan. Kenapa? Karena ia terkena tekanan hidrostatis yang lebih besar dibandingkan yang atas.

Apa sih tekanan hidrostatis itu?

Secara definisi, tekanan hidrostatis adalah tekanan yang diakibatkan oleh gaya yang ada pada zat cair terhadap suatu luas bidang tekan, pada kedalaman tertentu. Kasarnya, setiap jenis zat cair, akan memberikan tekanan tertentu, tergantung dari kedalamannya.

contoh soal rumus tekanan hidrostatis

Ya, jadi konsep ini lah yang ngebuat si penyelam yang berada di bawah, kepalanya akan “lebih sakit” daripada yang hanya di sekitar permukaan saja. Karena, dia mendapatkan tekanan dari zat cair (dalam hal ini laut). Contoh lain: ketika kamu lari di kolam renang, pasti akan terasa lebih “berat” dibandingkan di jogging track kan? Ya karena tubuh kamu mendapat tekanan dari air di kolam renang.

Sekarang, kita coba buktikan konsep ini dengan contoh yang lain ya. Coba kamu pikir dulu, kira-kira, mana keran air yang ketika dibuka akan mengucur paling jauh? Jangan tap gambarnya dulu ya buat liat bocorannya. Coba, dipikir dulu. Kalau pun udah jawab, cari tahu kenapa?


Betul. Seperti halnya penyelam tadi, tekanan hidrostatis yang paling besar terdapat di keran paling bawah (keran C). Jelas aja, perbandingan jaraknya aja 3 kali lipat dari keran A. Maka, karena jenis airnya sama, tekanan hidrostatisnya akan 3 kali lipat lebih besar dibanding yang keran A.

Ingat ya, untuk mengecek tekanan hidrostatis, bagian jarak (h) diukur dari permukaan zat cair. Bukan dari bagian dasar.


 Kalau kita hitung, maka tekanan hidrostatis di keran C menjadi seperti berikut.

Diketahui:

contoh pembahasan soal tekanan hidrostatis

 

Jawab:

pembahasan soal keran C - tekanan hidrostatis
 

Bandingkan dengan keran A

pembahasan soal keran A - tekanan hidrostatis

 

Atau dengan keran B

pembahasan soal keran B - tekanan hidrostatis

 

Hasilnya, ketika keran C dibuka, dia akan mendapat tekanan yang lebih besar dari air yang ada di dalam bak. Maka dari itu, kucurannya akan lebih jauh. Konsep penjelasan tekanan hidrostatis cukup ada di tekanannya aja ya. Kalau kamu ingin tahu berapa lama waktu yang dibutuhkan sampai air di bak habis, atau berapa kecepatan kucuran air itu, ada konsep lain yang harus dipelajarin. Namanya hukum Bernoulli. Pokoknya, tekanan hidrostatis ini hanya sebatas seberapa besar tekanan yang diberikan zat cair di kedalaman tertentu. 



SUMBER : https://www.ruangguru.com/blog/tekanan-hidrostatis

SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar:

Tekanan Zat Padat

A. Tekanan Zat Padat


Siapa yang pernah menggantungkan jam dinding atau menggantungkan bingkai foto? Nah, kalau pernah, kamu tahu nggak, kenapa sih paku yang menahan bingkai fotomu bisa menancap dan menancap pada tembok yang tebal?

Betul banget! Hal itu dikarenakan adanya tekanan pada paku. Tekanan adalah besarnya gaya yang bekerja pada luasan bidang tekan. Jadi, ketika ujung paku yang memiliki permukaan runcing ditempelkan ke dinding, kemudian gaya yang kamu berikan pada paku cukup besar, maka tekanan yang dihasilkan akan besar. Tekanan yang besar ini akan membuat dinding jadi berlubang.

Ada pertanyaan menarik, nih! Coba deh lihat gambar paling atas pada artikel ini. Menurutmu, apa yang akan terjadi jika yang dipukul adalah bagian yang runcing, apakah bagian datar pada paku dapat menembus tembok?


Kamu bakal kesulitan untuk mendorong bagian datar paku agar paku tersebut bisa menembus tembok. Hmm, kenapa ya? Kok bisa? Nah secara matematis hubungan tekanan, luas bidang tekan, dan gaya dituliskan seperti ini!

rumus tekanan zat padat

Seperti yang kita tahu, bagian ujung paku yang datar memiliki ukuran permukaan yang lebih besar dibandingkan dengan bagian ujung paku yang runcing. Nahketika area mengecil dengan gaya yang sama besar, maka tekanan yang dihasilkan akan semakin membesar dan ketika area diperbesar, maka tekanan yang dihasilkan akan mengecil.

Maka, menggunakan paku untuk melubangi dinding dengan ujung yang runcing, jauh lebih mudah dibandingkan menggunakan bagian datarnya. Hal ini dikarenakan luas permukaan bagian runcing lebih kecil daripada bagian datar, sehingga tekanan yang diberikan terhadap tembok akan lebih besar.

Kalau masih bingung, kita lakukan percobaan ini yuk.



Yup, sakit, kan? Ketika batang korek api kamu tekan di antara ibu jari dan telunjuk, kamu akan merasakan sakit di bagian ibu jari dan telunjuk. Ketika tekanan ditambah, rasa sakit pun semakin bertambah. Tetapi, ujung korek api dengan gumpalan, memberikan tekanan yang relatif kecil daripada ujung satunya. Hmm, kok bisa, ya?

Berdasarkan percobaan di atas, kamu memberikan gaya yang sama pada kedua ujung korek api, tetapi tekanan yang diberikan korek api pada ibu jari dan telunjukmu berbeda. Hal ini disebabkan karena perbedaan luas permukaan antara kedua ujung korek api tersebut.

Ujung korek api yang mempunyai gumpalan memberikan tekanan yang relatif kecil daripada ujung korek api yang tidak mempunyai gumpalan. Semakin kecil luas permukaan tempat gaya bekerja, semakin besar tekanan yang dihasilkan gaya tersebut. Jadi hubungan tekanan dan luas permukaan adalah berbanding terbalik.

Nah, ketika kamu menambah gaya jepit pada kedua ujung korek api saat gumpalan korek api dipotong, kamu akan merasakan tekanan yang semakin besar dari kedua ujung korek api. Hal ini menunjukkan bahwa semakin besar gaya yang bekerja, semakin besar tekanannyaJadi hubungan gaya dan tekanan adalah berbanding lurus.



Sekarang coba jawab pertanyaan ini, ya.

Latihan Soal Tekanan pada Zat Padat

 

Yup, betul jawabannya D. Tekanan paling besar terdapat pada benda nomor (4). Kenapa begitu?

Seperti halnya paku di atas tadi, tekanan paling besar terdapat pada benda nomor 4. Dari rumus tekanan P=F/A, di soal kan tertulis tuh keempat benda memiliki massa yang sama yaitu 100 kg, berarti besar gaya berat keempat benda sama aja ya. Ingat kan tinggal massa dikali percepatan gravitasi tuh.

Kita telah belajar bahwa untuk gaya yang sama, semakin kecil luas permukaan, semakin besar tekanan yang dihasilkan. Sementara semakin besar luas permukaan, semakin kecil tekanan yang dihasilkan. Maka, dengan besar gaya berat yang sama, tekanan yang paling besar diakibatkan oleh benda dengan luas permukaan paling kecil. Mudah bukan??



Nah ini adalah penerapan Zat Padat pada kehidupan sehari-hari.



Yup, selesai deh materi mengenai tekanan zat padat. Agar mudah mengingat prinsip tekanan pada zat padat, ingat aja kalimat kalo lo ngerasa tekanan hidup lo gede, solusinya kurangi aja gaya dan perbesar luas hati lohahaha. Oke?


SUMBER ARTIKEL : https://www.ruangguru.com/blog/tekanan-zat-padat









SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar:

blog baruu

 hai teman-teman hari ini aku berhasil buat blog baru loh. perkenalan dulu yahhh, nama aku Noor Aima Tristha Ananti (nooraima/noorma), panjang bukan? hahaha. oh iya aku mau critaa sedikit tentangku, aku adalah anak ketiga dari tiga bersaudara dan pada bulan juli kemarin aku dan kedua kakak ku menjadi anak yatim sekian terimakasih. 

mau tau alamat blog ku ngga? alamat blog ku itu (miraclezhu.blogspot.com) jangan lupa mampirr yaaaa:) 

nooraimaaa

hehehe itu akuu yaaaa, cantik nggaa, iya cantik dong anaknya bapak gtu lohhh. 

SHARE THIS POST

  • Facebook
  • Twitter
  • Myspace
  • Google Buzz
  • Reddit
  • Stumnleupon
  • Delicious
  • Digg
  • Technorati
Author: admin
Lorem ipsum dolor sit amet, contetur adipcing elit, sed do eiusmod temor incidunt ut labore et dolore agna aliqua. Lorem ipsum dolor sit amet.

0 komentar: